login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an unoriented cycle of length n using k or fewer colors (subsets).
6

%I #23 Nov 05 2019 05:52:52

%S 1,1,1,1,2,1,1,2,2,1,1,2,3,4,1,1,2,3,6,4,1,1,2,3,7,9,8,1,1,2,3,7,11,

%T 22,9,1,1,2,3,7,12,33,40,18,1,1,2,3,7,12,36,73,100,23,1,1,2,3,7,12,37,

%U 89,237,225,44,1,1,2,3,7,12,37,92,322,703,582,63,1,1,2,3,7,12,37,93,349,1137,2433,1464,122,1,1,2,3,7,12,37,93,353,1308,4704,8309,3960,190,1,1,2,3,7,12,37,93,354,1345,5953,19839,30108,10585,362,1

%N Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an unoriented cycle of length n using k or fewer colors (subsets).

%C Two color patterns are equivalent if the colors are permuted. An unoriented cycle counts each chiral pair as one, i.e., they are equivalent.

%C Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.

%C T(n,k)=Pi_k(C_n) which is the number of non-equivalent partitions of the cycle on n vertices, with at most k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - _Bahman Ahmadi_, Aug 21 2019

%C In other words, the number of n-bead bracelet structures using a maximum of k different colored beads. - _Andrew Howroyd_, Oct 30 2019

%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

%H Andrew Howroyd, <a href="/A320748/b320748.txt">Table of n, a(n) for n = 1..1275</a>

%H B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, <a href="https://arxiv.org/abs/1910.12102">Number of Distinguishing Colorings and Partitions</a>, arXiv:1910.12102 [math.CO], 2019.

%H E. N. Gilbert and J. Riordan, <a href="http://projecteuclid.org/euclid.ijm/1255631587">Symmetry types of periodic sequences</a>, Illinois J. Math., 5 (1961), 657-665.

%F T(n,k) = Sum_{j=1..k} Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).

%F T(n,k) = (A320747(n,k) + A305749(n,k)) / 2 = A320747(n,k) - A320742(n,k) = A320742(n,k) + A305749(n,k).

%e Array begins with T(1,1):

%e 1 1 1 1 1 1 1 1 1 1 1 1 ...

%e 1 2 2 2 2 2 2 2 2 2 2 2 ...

%e 1 2 3 3 3 3 3 3 3 3 3 3 ...

%e 1 4 6 7 7 7 7 7 7 7 7 7 ...

%e 1 4 9 11 12 12 12 12 12 12 12 12 ...

%e 1 8 22 33 36 37 37 37 37 37 37 37 ...

%e 1 9 40 73 89 92 93 93 93 93 93 93 ...

%e 1 18 100 237 322 349 353 354 354 354 354 354 ...

%e 1 23 225 703 1137 1308 1345 1349 1350 1350 1350 1350 ...

%e 1 44 582 2433 4704 5953 6291 6345 6350 6351 6351 6351 ...

%e 1 63 1464 8309 19839 28228 31284 31874 31944 31949 31950 31950 ...

%e 1 122 3960 30108 88508 144587 171283 178190 179204 179300 179306 179307 ...

%e For T(7,2)=9, the patterns are AAAAAAB, AAAAABB, AAAABAB, AAAABBB, AAABAAB, AAABABB, AABAABB, AABABAB, and AAABABB; only the last is chiral, paired with AAABBAB.

%t Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]

%t Ach[n_,k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)

%t Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j]&]/n + Ach[n,j])/2, {j,k-n+1}], {k,15}, {n,k}] // Flatten

%o (PARI) \\ Ach is A304972 and R is A152175 as square matrices.

%o Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}

%o R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}

%o T(n)={my(M=(R(n) + Ach(n))/2); for(i=2, n, M[,i] += M[,i-1]); M}

%o { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ _Andrew Howroyd_, Nov 03 2019

%Y Partial row sums of A152176.

%Y Columns 1-6 are A057427, A000011, A056353, A056354, A056355, A056356

%Y For increasing k, columns converge to A084708.

%Y Cf. A320747 (oriented), A320742 (chiral), A305749 (achiral).

%K nonn,tabl,easy

%O 1,5

%A _Robert A. Russell_, Oct 21 2018