Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 26 2018 20:36:02
%S 1,1,4,7,21,40,106,216,534,1139,2715,5962,14012,31420,73484,167617,
%T 392714,908600,2140429,5015655,11905145,28228533,67590229,162067916,
%U 391695348,949359190,2316618809,5673557284,13979155798,34583650498,86034613145,214948212879
%N Number of non-isomorphic multiset partitions of weight n using singletons or pairs.
%H Andrew Howroyd, <a href="/A320663/b320663.txt">Table of n, a(n) for n = 0..50</a>
%e Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions:
%e {{1}} {{1,1}} {{1},{1,1}} {{1,1},{1,1}}
%e {{1,2}} {{1},{2,2}} {{1,1},{2,2}}
%e {{1},{1}} {{1},{2,3}} {{1,2},{1,2}}
%e {{1},{2}} {{2},{1,2}} {{1,2},{2,2}}
%e {{1},{1},{1}} {{1,2},{3,3}}
%e {{1},{2},{2}} {{1,2},{3,4}}
%e {{1},{2},{3}} {{1,3},{2,3}}
%e {{1},{1},{1,1}}
%e {{1},{1},{2,2}}
%e {{1},{1},{2,3}}
%e {{1},{2},{1,2}}
%e {{1},{2},{2,2}}
%e {{1},{2},{3,3}}
%e {{1},{2},{3,4}}
%e {{1},{3},{2,3}}
%e {{2},{2},{1,2}}
%e {{1},{1},{1},{1}}
%e {{1},{1},{2},{2}}
%e {{1},{2},{2},{2}}
%e {{1},{2},{3},{3}}
%e {{1},{2},{3},{4}}
%o (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
%o gs(v) = {sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(2*v[i]*v[j]/g))) + sum(i=1, #v, my(r=v[i]); (1 + (1+r)%2)*x^r + ((1+r)\2)*x^(2*r))}
%o a(n)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(gs(p) + O(x*x^n), -n))[n]); s/n!} \\ _Andrew Howroyd_, Oct 26 2018
%Y Cf. A001055, A001222, A001358, A005117, A006881, A007716, A007717, A037143, A320462, A320655, A320656, A320664, A320665.
%K nonn
%O 0,3
%A _Gus Wiseman_, Oct 18 2018
%E Terms a(11) and beyond from _Andrew Howroyd_, Oct 26 2018