login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of chiral pairs of color patterns (set partitions) in a cycle of length n using exactly 3 colors (subsets).
6

%I #18 Nov 04 2019 02:17:51

%S 0,0,0,0,0,4,12,44,137,408,1190,3416,9730,27560,78148,221250,627960,

%T 1784038,5081154,14496956,41455409,118764600,340919744,980315700,

%U 2823696150,8145853520,23533759241,68081765650,197206716570,571906256808,1660387879116,4825525985408,14037945170525,40875277302720,119122416494961,347440682773324,1014151818975190,2962391932326680,8659301777595196,25328461701728194

%N Number of chiral pairs of color patterns (set partitions) in a cycle of length n using exactly 3 colors (subsets).

%C Two color patterns are the same if the colors are permuted. A chiral cycle is different from its reverse.

%C Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.

%C There are nonrecursive formulas, generating functions, and computer programs for A056296 and A304973, which can be used in conjunction with the first formula.

%H Andrew Howroyd, <a href="/A320643/b320643.txt">Table of n, a(n) for n = 1..200</a>

%H E. N. Gilbert and J. Riordan, <a href="http://projecteuclid.org/euclid.ijm/1255631587">Symmetry types of periodic sequences</a>, Illinois J. Math., 5 (1961), 657-665.

%F a(n) = (A056296(n) - A304973(n)) / 2 = A056296(n) - A056358(n) = A056358(n) - A304973(n).

%F a(n) = -Ach(n,k)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,k), where k=3 is number of colors or sets, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).

%e For a(6)=4, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, and AABACC-AABBAC.

%t Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)

%t Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]

%t k=3; Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/(2n) - Ach[n,k]/2,{n,40}]

%Y Column 3 of A320647.

%Y Cf. A056296 (oriented), A056358 (unoriented), A304973 (achiral).

%K nonn,easy

%O 1,6

%A _Robert A. Russell_, Oct 18 2018