login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320614
Expansion of (1 + x^5) / ((1 - x^2) * (1 - x^3) * (1 - x^7)) in powers of x.
0
1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 6, 8, 8, 9, 10, 11, 12, 13, 15, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 30, 32, 33, 36, 37, 39, 41, 43, 45, 47, 50, 51, 54, 56, 58, 61, 63, 66, 68, 71, 73, 76, 79, 81, 85, 87, 90, 93, 96, 99, 102, 106, 108, 112, 115, 118
OFFSET
0,6
FORMULA
Euler transform of length 10 sequence [0, 1, 1, 0, 1, 0, 1, 0, 0, -1].
G.f.: (1 - x^10) / ((1 - x^2) * (1 - x^3) * (1 - x^5) * (1 - x^7)) = (1-x+x^2-x^3+x^4) / ((1-x)^3*(1+x+x^2)*(1+x+x^2+x^3+x^4+x^5+x^6)).
a(n) = a(-7-n) for all n in Z.
EXAMPLE
G.f. = 1 + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 4*x^9 + ...
MATHEMATICA
a[ n_] := Quotient[ n^2 + 7 n - 9 Boole[Mod[n, 3] == 1], 42] + 1;
PROG
(PARI) {a(n) = (n^2 + 7*n - 9*(n%3==1))\42 + 1};
(PARI) {a(n) = my(m=max(n, -7-n)); polcoeff( (1 + x^5) / ((1 - x^2)*(1 - x^3)*(1 - x^7))+ x*O(x^m), m)};
CROSSREFS
Sequence in context: A092982 A302930 A248868 * A030566 A007963 A137222
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Oct 17 2018
STATUS
approved