login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1; if n is odd, a(n) = Product_{i=0..n-1} a(i); if n is even, a(n) = Sum_{i=0..n-1} a(i).
2

%I #32 Oct 30 2018 09:43:58

%S 1,1,2,2,6,24,36,20736,20808,8947059130368,8947059171984,

%T 716210897494804754044764041567551881216,

%U 716210897494804754044764059461670225184

%N a(0) = 1; if n is odd, a(n) = Product_{i=0..n-1} a(i); if n is even, a(n) = Sum_{i=0..n-1} a(i).

%C Next term is too large to include.

%C Odd terms are the product of previous terms and even terms are the sum of previous terms.

%H Iain Fox, <a href="/A320603/b320603.txt">Table of n, a(n) for n = 0..18</a>

%H Iain Fox, <a href="/A320603/a320603.txt">Table of n, a(n) for n = 0..32</a>

%F a(n) = a(n-1) + 2*a(n-2), for even n > 2.

%F a(n) = a(n-1) * a(n-2)^2, for odd n > 1.

%e 5 is odd, so a(5) = 1 * 1 * 2 * 2 * 6 = 24.

%e 6 is even, so a(6) = 1 + 1 + 2 + 2 + 6 + 24 = 36.

%t a[0]:= 1; a[n_]:= If[OddQ[n], Product[a[j], {j,0,n-1}], Sum[a[j], {j,0,n -1}]]; Table[a[n], {n, 0, 15}] (* _G. C. Greubel_, Oct 19 2018 *)

%o (PARI) first(n) = my(res = vector(n, i, 1)); for(x=3, n, res[x]=if(x%2, sum(i=1, x-1, res[i]), prod(i=1, x-1, res[i]))); res

%o (PARI) first(n) = my(res = vector(n, i, 1)); res[3]++; for(x=4, n, res[x]=if(x%2, res[x-1]+2*res[x-2], res[x-1]*res[x-2]^2)); res

%Y Cf. A039941, A077753, A122961.

%Y Sum of previous terms: A011782.

%Y Product of previous terms: A165420.

%K nonn

%O 0,3

%A _Iain Fox_, Oct 17 2018