login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = L_n(n), where L_n(x) is the Lucas polynomial.
1

%I #10 Sep 08 2022 08:46:23

%S 2,1,6,36,322,3775,54758,946043,18957314,432083484,11035502502,

%T 312119004989,9682664443202,326872340718053,11928306344169798,

%U 467875943531657100,19629328849962024962,877095358067166709187,41583555684469161804998,2084882704791413248133431

%N a(n) = L_n(n), where L_n(x) is the Lucas polynomial.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LucasPolynomial.html">Lucas Polynomial</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Fibonacci_polynomials">Fibonacci polynomials</a>

%F a(n) = ((n + sqrt(n^2 + 4))^n + (n - sqrt(n^2 + 4))^n)/2^n.

%t Table[LucasL[n, n], {n, 0, 19}] (* or *)

%t Table[Round[((n + Sqrt[n^2 + 4])^n + (n - Sqrt[n^2 + 4])^n)/2^n], {n, 0, 19}] (* Round is equivalent to FullSimplify here *)

%o (PARI) for(n=0,20, print1(if(n==0,2, sum(j=0,floor(n/2), (n/(n-j))*((n-j)!*n^(n-2*j)/(j!*(n-2*j)!)))), ", ")) \\ _G. C. Greubel_, Oct 15 2018

%o (Magma) [2] cat [(&+[(n/(n-j))*(Factorial(n-j)*n^(n-2*j)/(Factorial(j)*Factorial(n-2*j))): j in [0..Floor(n/2)]]): n in [1..20]]; // _G. C. Greubel_, Oct 15 2018

%Y Cf. A084844, A320534.

%Y Main diagonal of A352362.

%K nonn

%O 0,1

%A _Vladimir Reshetnikov_, Oct 15 2018