login
A320559
Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most nine elements and for at least one block c the smallest integer interval containing c has exactly nine elements.
3
4140, 30751, 158766, 705926, 2928164, 11774145, 46852653, 186723275, 759062433, 3170429794, 13343960839, 56013146481, 233387096649, 963938933894, 3948441860748, 16062919807404, 65036845178255, 262641546675463, 1059920408695467, 4277149345637299
OFFSET
9,1
LINKS
FORMULA
a(n) = A276725(n) - A276724(n).
MAPLE
b:= proc(n, m, l) option remember; `if`(n=0, 1,
add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
`if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(9):
seq(a(n), n=9..40);
CROSSREFS
Column k=9 of A276727.
Sequence in context: A346861 A251650 A270772 * A294058 A255948 A273658
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 15 2018
STATUS
approved