login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 6 colors (subsets).
3

%I #18 Sep 08 2022 08:46:23

%S 0,0,0,0,0,0,9,124,1300,11316,89513,660978,4658738,31711638,210332227,

%T 1367416232,8752773288,55343303064,346540112781,2153037307846,

%U 13292835205606,81652655795106,499484899831775,3045117929546220,18513208314957356,112297592929814292,679900657841661529,4110073054119135194,24814158520762637754

%N Number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 6 colors (subsets).

%C Two color patterns are equivalent if we permute the colors. Chiral color patterns must not be equivalent if we reverse the order of the pattern.

%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (21, -159, 399, 1085, -8085, 9555, 34125, -98644, 5544, 253764, -248724, -136800, 317520, -129600).

%F a(n) = (S2(n,k) - A(n,k))/2, where k=6 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].

%F G.f.: (x^6 / (Product_{k=1..6} (1 - k*x)) - x^6 *(1+x)*(1-4*x^2)*(1+2*x-x^2-4*x^3) / Product_{k=1..6} (1 - k*x^2)) / 2.

%F a(n) = (A000770(n) - A304976(n)) / 2 = A000770(n) - A056330(n) = A056330(n) - A304976(n).

%e For a(7)=9, the chiral pairs are AABCDEF-ABCDEFF, ABACDEF-ABCDEFE, ABCADEF-ABCDEFD, ABCDAEF-ABCDEFC, ABCDEAF-ABCDEFB, ABBCDEF-ABCDEEF, ABCBDEF-ABCDEDF, ABCDBEF-ABCDECF, and ABCCDEF-ABCDDEF.

%t k=6; Table[(StirlingS2[n,k] - If[EvenQ[n], StirlingS2[n/2+3,6] - 3StirlingS2[n/2+2,6] - 8StirlingS2[n/2+1,6] + 16StirlingS2[n/2,6], 3StirlingS2[(n+5)/2,6] - 17StirlingS2[(n+3)/2,6] + 20StirlingS2[(n+1)/2,6]])/2, {n,30}]

%t Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)

%t k = 6; Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 30}]

%t LinearRecurrence[{21, -159, 399, 1085, -8085, 9555, 34125, -98644, 5544, 253764, -248724, -136800, 317520, -129600}, {0, 0, 0, 0, 0, 0, 9, 124, 1300, 11316, 89513, 660978, 4658738, 31711638}, 30]

%o (PARI) x='x+O('x^30); concat(vector(6), Vec((x^6/prod(k=1,6, 1-k*x) - x^6* (1+x)*(1-4*x^2)*(1+2*x-x^2-4*x^3)/prod(k=1,6,(1-k*x^2)))/2)) \\ _G. C. Greubel_, Oct 19 2018

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0,0,0,0,0,0] cat Coefficients(R!((x^6/(&*[1-k*x: k in [1..6]]) - x^6*(1+x)*(1-4*x^2)*(1+2*x-x^2-4*x^3)/(&*[1-k*x^2: k in [1..6]]) )/2)); // _G. C. Greubel_, Oct 19 2018

%Y Column 6 of A320525.

%Y Cf. A000770 (oriented), A056330 (unoriented), A304976 (achiral).

%K nonn,easy

%O 1,7

%A _Robert A. Russell_, Oct 14 2018