login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime k with sigma(sigma(sigma(k))) < 3*k + 1.
1

%I #14 May 25 2020 17:17:31

%S 3,97,241,337,577,1249,3361,3697,4801,6961,8191,10657,14449,16561,

%T 18049,23761,25537,31249,32257,37537,48049,49297,64081,65521,77617,

%U 79201,89041,120049,126001,138337,140449,153457,171697,174049,181201,193441,208657,216481

%N Prime k with sigma(sigma(sigma(k))) < 3*k + 1.

%H Robert Israel, <a href="/A320517/b320517.txt">Table of n, a(n) for n = 1..1000</a>

%p with(numtheory,sigma):

%p isA320517 := n -> isprime(n) and (sigma(sigma(sigma(n))) < 3*n + 1):

%p S := select(isA320517, [$1..300000]);

%t Select[Range[250000], PrimeQ[#] && DivisorSigma[1, DivisorSigma[1, DivisorSigma[1, #]]] < 3*# + 1 &] (* _Vaclav Kotesovec_, Oct 14 2018 *)

%o (PARI) isok(n) = isprime(n) && (sigma(sigma(sigma(n))) < 3*n + 1); \\ _Michel Marcus_, Oct 14 2018

%Y Cf. A000203, A320513.

%K nonn

%O 1,1

%A _Peter Luschny_, Oct 14 2018