login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A320442
Primes which are the concatenation of primes p and 2*p-1.
2
23, 367733, 6611321, 6911381, 9971993, 14592917, 20114021, 25575113, 27075413, 30616121, 39677933, 40278053, 41778353, 43578713, 46399277, 574911497, 621112421, 622912457, 696113921, 753715073, 756115121, 795115901, 819116381, 862917257, 868917377, 961919237, 1078921577, 1083721673, 1131122621
OFFSET
1,1
COMMENTS
All terms == 5 (mod 6).
LINKS
EXAMPLE
367733 is in the sequence because 367, 2*367-1=733, and 367733 are all primes.
MAPLE
f:= proc(p) local q, r;
if not isprime(p) then return NULL fi;
q:= 2*p-1;
r:= p*10^(1+ilog10(q))+q;
if isprime(r) and isprime(q) then r else NULL fi;
end proc:
map(f, [2, seq(i, i=7..20000, 6)]);
PROG
(PARI) forprime(p=1, 1e4, my(cc=eval(concat(Str(p), Str(2*p-1)))); if(ispseudoprime(2*p-1) && ispseudoprime(cc), print1(cc, ", "))) \\ Felix Fröhlich, Jan 09 2019
CROSSREFS
Sequence in context: A138763 A156176 A013772 * A034247 A050234 A124993
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Jan 09 2019
STATUS
approved