Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 26 2018 17:59:49
%S 1,1,3,1,1,1,20,1,1,1,3,1,1,28,35,28,1,1,3,1,1,1,20,1,1,1,3,1,1,784,
%T 61,3,1,48,3,1,1,28,5,3,1,1,28,1,1,3,34,1,3,1,1,1,6,1,1,1,3,1,4,1,1,6,
%U 1,1,1,3,1,1371,3,1,106,84,1,1,3,83,1,3,5,28,1,1,3,48,1,3,8,1,1,20,1,1,1,3,1,1,784,1,1,3,1,1,1,20,1,1,59,28,5,3,1,1,28,1,1,3,10,3,1,1,28,1,1,3,5,28,7,28,1,1,3,10,3,1,1,28,1,1,3,5,28,2399,3,1,4,1,1,6,1,1,185,2352,1
%N Continued fraction of a constant t with partial denominators {a(n), n>=0} such that the continued fraction of 4*t yields partial denominators {7*a(n), n>=0}.
%C Is this constant transcendental?
%C Compare to the continued fraction expansions of sqrt(3) and 3*sqrt(3), which are related by a factor of 5: sqrt(3) = [1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] and 3*sqrt(3) = [5; 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, ...].
%C Further, let CF(x) denote the simple continued fraction expansion of x, then we have the related identities which hold for n >= 1:
%C (C1) CF( (4*n+1) * sqrt((n+1)/n) ) = (4*n+3) * CF( sqrt((n+1)/n) ),
%C (C2) CF( (2*n+1) * sqrt((n+2)/n) ) = (2*n+3) * CF( sqrt((n+2)/n) ).
%H Paul D. Hanna, <a href="/A320412/b320412.txt">Table of n, a(n) for n = 0..5000</a>
%F Given t = [a(0); a(1), a(2), a(3), a(4), a(5), a(6), ...], some related simple continued fractions are:
%F (1) 4*t = [7*a(0); 7*a(1), 7*a(2), 7*a(3), 7*a(4), 7*a(5), ...],
%F (2) 4*t/7 = [a(0); 49*a(1), a(2), 49*a(3), a(4), 49*a(5), a(6), ...],
%F (3) 28*t = [49*a(0); a(1), 49*a(2), a(3), 49*a(4), a(5), 49*a(6), ...].
%e The decimal expansion of this constant t begins:
%e t = 1.785474560974062575656044807894470237170401346194715783864279820...
%e The simple continued fraction expansion of t begins:
%e t = [1; 1, 3, 1, 1, 1, 20, 1, 1, 1, 3, 1, 1, 28, 35, 28, 1, 1, 3, 1, 1, 1, 20, 1, 1, 1, 3, 1, 1, 784, 61, 3, 1, 48, 3, 1, 1, 28, ... , a(n), ...]
%e such that the simple continued fraction expansion of 4*t begins:
%e 4*t = [7; 7, 21, 7, 7, 7, 140, 7, 7, 7, 21, 7, 7, 196, 245, 196, 7, 7, 21, 7, 7, 7, 140, 7, 7, 7, 21, 7, 7, 5488, 427, 21, 7, 679, ... , 7*a(n), ...].
%e ...
%e The initial 528 terms in the continued fraction expansion of t are
%e t = [1;1,3,1,1,1,20,1,1,1,3,1,1,28,35,28,1,1,3,1,1,1,20,1,1,
%e 1,3,1,1,784,61,3,1,48,3,1,1,28,5,3,1,1,28,1,1,3,34,1,3,
%e 1,1,1,6,1,1,1,3,1,4,1,1,6,1,1,1,3,1,1371,3,1,106,84,1,
%e 1,3,83,1,3,5,28,1,1,3,48,1,3,8,1,1,20,1,1,1,3,1,1,784,
%e 1,1,3,1,1,1,20,1,1,59,28,5,3,1,1,28,1,1,3,10,3,1,1,28,
%e 1,1,3,5,28,7,28,1,1,3,10,3,1,1,28,1,1,3,5,28,2399,3,1,4,
%e 1,1,6,1,1,185,2352,1,1,3,1,1,1,20,1,1,144,1,3,1,1,1,20,1,
%e 1,8,3,1,48,3,1,1,28,5,3,1,83,3,1,1,84,14,28,1,1,3,34,1,
%e 3,1,1,1,6,1,1,1,3,1,4,1,1,6,1,1,1,3,1,1371,3,1,1,28,
%e 5,3,1,1,28,1,1,3,34,1,3,1,1,1,6,1,1,102,1,3,48,1,3,8,
%e 1,1,20,1,1,1,3,1,1,784,1,1,3,1,1,1,20,1,1,17,84,1,1,3,
%e 1,1,1,195,1,1,1,3,1,1,84,8,1,3,48,1,3,12,784,1,1,3,1,1,
%e 1,20,1,1,17,84,1,1,3,1,1,1,195,1,1,1,3,1,1,84,8,1,3,48,
%e 1,3,4198,84,1,1,3,6,1,3,1,1,1,6,1,1,10,28,1,1,3,323,1,1,
%e 16463,1,1,1,3,1,1,84,1,1,3,1,1,1,6,1,1,34,1,1,6,1,1,1,
%e 3,1,251,3,1,1,84,1,1,3,1,1,1,6,1,1,34,1,1,6,1,1,1,3,
%e 1,13,3,1,4,1,1,6,1,1,83,1,1,20,1,1,1,3,1,1,784,8,1,3,
%e 5,28,145,3,1,4,1,1,6,1,1,1,3,1,146,3,1,23,1,3,48,1,3,1,
%e 1,1,6,1,1,4,1,3,59,3,1,1,84,1,1,3,1,1,1,6,1,1,10,28,
%e 1,1,3,1,1,1,20,1,1,1,3,1,6,3,1,1,28,10,1,1,6,1,1,1,
%e 3,1,1,84,1,1,3,2399,84,1,1,3,1,1,1,195,1,1,8,3,1,4,1,1,
%e 6,1,1,1,3,1,48,3,1,1,28,5,3,1,58,1,3,1,1,1,20,1,1, ...].
%e ...
%e The initial 1000 digits in the decimal expansion of t are
%e t = 1.78547456097406257565604480789447023717040134619471\
%e 57838642798207580399578548165115122069732837050490\
%e 61286404635705077102774547249610751367094378190709\
%e 85401921611227678484369568036324073754957652390489\
%e 39943379031303125762694739475382462408109374813120\
%e 00422151267123870355135847303104193193077189589829\
%e 99475276214685582004074592162502265622639066962207\
%e 90264315701034911225864026241008924068247829601272\
%e 51264292894203497339763733333382142446328347420764\
%e 99374490081465556514449152015450022286517069550755\
%e 66197498206618148152838524399347921835127003551875\
%e 27576125361547533763998734682666496571601524379160\
%e 71274633004761476783978729230894485114372110439235\
%e 32434589015973787010030486968307426525808424138019\
%e 30747406263726641419798279952039943508589013753829\
%e 08707915177794914067867811104635718728142844757658\
%e 92545040853582478172771767319724386460332134939668\
%e 53646394220175623167681377901091602489813663749106\
%e 20051189089949357240864658051397802563633845923264\
%e 45649305634826816712996792415779406659039071052772...
%e ...
%e GENERATING METHOD.
%e Start with CF = [1] and repeat (PARI code):
%e t = (1/4)*contfracpnqn(7*CF)[1,1]/contfracpnqn(7*CF)[2,1]; CF = contfrac(t)
%e This method can be illustrated as follows.
%e t0 = [1] = 1 ;
%e t1 = (1/4)*[7] = [1; 1, 3] = 7/4 ;
%e t2 = (1/4)*[7; 7, 21] = [1; 1, 3, 1, 1, 1, 20, 2] = 1057/592
%e t3 = (1/4)*[7; 7, 21, 7, 7, 7, 140, 14] = [1; 1, 3, 1, 1, 1, 20, 1, 1, 1, 3, 1, 1, 28, 35, 56] = 745628689/417608128 ;
%e t4 = (1/4)*[7; 7, 21, 7, 7, 7, 140, 7, 7, 7, 21, 7, 7, 196, 245, 392] = [1; 1, 3, 1, 1, 1, 20, 1, 1, 1, 3, 1, 1, 28, 35, 28, 1, 1, 3, 1, 1, 1, 20, 1, 1, 1, 3, 1, 1, 784, 61, 3, 1, 97, 4] = 381285245640002405521/213548405546586390784 ; ...
%e where this constant t equals the limit of the iterations of the above process.
%e The number of terms generated in each iteration of the above method begins:
%e [1, 3, 8, 16, 35, 80, 172, 387, 908, 2164, 5120, 12111, 28492, 67075, ...].
%e ...
%o (PARI) /* Generate over 5100 terms of the continued fraction */
%o CF=[1];
%o {for(i=1, 10, t = (1/4)*contfracpnqn(7*CF)[1, 1]/contfracpnqn(7*CF)[2, 1];
%o CF = contfrac(t) ); CF}
%Y Cf. A320413, A320410.
%K nonn,cofr
%O 0,3
%A _Paul D. Hanna_, Oct 26 2018