login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320381
Number of parts in all partitions of 2n with largest multiplicity n.
2
0, 1, 5, 7, 15, 18, 38, 43, 81, 101, 164, 206, 332, 405, 613, 783, 1115, 1410, 1984, 2483, 3402, 4281, 5697, 7147, 9417, 11702, 15167, 18861, 24093, 29782, 37745, 46377, 58206, 71325, 88665, 108194, 133675, 162278, 199154, 241040, 293934, 354306, 429968, 516256
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..788 (terms 0..400 from Alois P. Heinz)
FORMULA
a(n) = A213177(2n,n).
EXAMPLE
a(2) = 5 = 3 + 2: [2,1,1], [2,2].
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((l-> [0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
end:
a:= n-> (b(2*n$2, n)-b(2*n$2, n-1))[2]:
seq(a(n), n=0..45);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[i<1, {0, 0}, Sum[b[n - i*j, i - 1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]];
a[n_] := (b[2n, 2n, n] - b[2n, 2n, n-1])[[2]];
a /@ Range[0, 45] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A213177.
Sequence in context: A031069 A314364 A321130 * A309292 A050851 A058918
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 11 2018
STATUS
approved