Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 25 2018 22:21:51
%S 0,0,0,1,1,3,3,7,8,15,19,37,48,87,126,227,342,611,964,1719,2806,4975,
%T 8327,14782,25157,44609,76972,136622,237987,422881,742149,1320825,
%U 2331491,4156392,7370868,13164429,23433637,41928557,74871434,134203411,240284935,431437069
%N Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n with no 1's.
%C Also phylogenetic trees with no singleton leaves on integer partitions of n with no 1's.
%H Andrew Howroyd, <a href="/A320294/b320294.txt">Table of n, a(n) for n = 1..500</a>
%e The a(4) = 1 through a(10) = 15 trees:
%e (22) (32) (33) (43) (44) (54) (55)
%e (42) (52) (53) (63) (64)
%e (222) (322) (62) (72) (73)
%e (332) (333) (82)
%e (422) (432) (433)
%e (2222) (522) (442)
%e ((22)(22)) (3222) (532)
%e ((22)(23)) (622)
%e (3322)
%e (4222)
%e (22222)
%e ((22)(24))
%e ((22)(33))
%e ((23)(23))
%e ((22)(222))
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m];
%t Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,10}]
%o (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=2, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ _Andrew Howroyd_, Oct 25 2018
%Y Cf. A000045, A000311, A000669, A002865, A141268, A292504, A304966, A304967, A319312, A320289, A320293, A320295, A320296.
%K nonn
%O 1,6
%A _Gus Wiseman_, Oct 09 2018
%E Terms a(16) and beyond from _Andrew Howroyd_, Oct 25 2018