Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Nov 14 2018 15:30:41
%S 3,5,7,23,29,41,43,47,61,67,83,89,223,227,229,443,449,661,881,883,887,
%T 2221,4441,4447,6661,8887,22229,44449,88883,444443,444449,666667,
%U 888887,22222223,66666667,88888883,222222227,444444443,666666667,888888883,888888887
%N k-digit primes with the same even digit repeated k-1 times and a single odd digit.
%C For the resulting number to be prime, the rightmost digit must be the odd one. - _Michel Marcus_, Oct 11 2018
%H Alois P. Heinz, <a href="/A320256/b320256.txt">Table of n, a(n) for n = 1..132</a>
%e 3, 5, 7 are in the sequence for k = 1.
%e 229 is in the sequence because it is a 3-digit prime with the first 3-1 digits repeating even (2) and the last digit odd (9). - _David A. Corneth_, Oct 10 2018
%t Join[{3, 5, 7}, Select[Flatten@ Table[{1, 3, 7, 9} + 10 FromDigits@ ConstantArray[k, n], {n, 9}, {k, Range[2, 8, 2]}], PrimeQ]] (* _Michael De Vlieger_, Oct 31 2018 *)
%o (PARI) first(n) = {n = max(n, 3); my(t = 3, res = List([3, 5, 7])); print1("3, 5, 7, "); for(i=1, oo, k=(10^i - 1) / 9; forstep(f = 2, 8, 2, forstep(d=1, 9, 2, c = 10 * f * k + d; if(isprime(c), print1(c", "); listput(res, c); t++; if(t>=n, return(res))))))} \\ _David A. Corneth_, Oct 10 2018
%Y Cf. A055558, A068690, A105975, A141311, A154764.
%K nonn,base
%O 1,1
%A _Enrique Navarrete_, Oct 08 2018
%E More terms from _Michel Marcus_, Oct 10 2018