login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Product_{k>=1, j>=1} (1 + x^(k*j))^2 / (1 - x^(k*j)).
1

%I #7 Oct 08 2018 10:16:24

%S 1,3,10,28,72,172,397,867,1840,3783,7580,14829,28454,53540,99119,

%T 180676,324758,576145,1010051,1750782,3003386,5101769,8586891,

%U 14327582,23711567,38937304,63471475,102741924,165204561,263956121,419183458,661833319,1039140705

%N G.f.: Product_{k>=1, j>=1} (1 + x^(k*j))^2 / (1 - x^(k*j)).

%C Convolution of A006171 and A320235.

%H Vaclav Kotesovec, <a href="/A320244/b320244.txt">Table of n, a(n) for n = 0..10000</a>

%F Conjecture: log(a(n)) ~ Pi * sqrt(2*n*log(n)/3).

%t nmax = 50; CoefficientList[Series[Product[(1+x^(k*j))^2/(1-x^(k*j)), {k, 1, nmax}, {j, 1, Floor[nmax/k]+1}], {x, 0, nmax}], x]

%Y Cf. A006171, A320235, A320238.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Oct 08 2018