login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n, k) read by descending antidiagonals: A(1, 1) = 2, A(1, k) = 1 for k > 1, and for n > 1, A(n, k) = Sum_{d|n, d>=k} A010051(1+d)*[Sum_{i=0..valuation(n,1+d)} A((n/d)/((1+d)^i), 1+d)].
5

%I #17 Dec 03 2018 18:29:14

%S 2,1,3,1,1,0,1,0,0,4,1,0,0,1,0,1,0,0,1,0,4,1,0,0,1,0,2,0,1,0,0,0,0,1,

%T 0,5,1,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,2,1,0,0,0,0,1,0,0,0,1,0,1,0,

%U 0,0,0,0,0,0,0,1,0,6,1,0,0,0,0,0,0,0,0,1,0,2,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0

%N Square array A(n, k) read by descending antidiagonals: A(1, 1) = 2, A(1, k) = 1 for k > 1, and for n > 1, A(n, k) = Sum_{d|n, d>=k} A010051(1+d)*[Sum_{i=0..valuation(n,1+d)} A((n/d)/((1+d)^i), 1+d)].

%C This square array gives the values obtained from the recursive PARI-program that _M. F. Hasler_ has provided Oct 05 2009 for A014197, in its two-argument form.

%H Antti Karttunen, <a href="/A320000/b320000.txt">Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of the array</a>

%e Array begins as:

%e n | k=1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16, ...

%e ---+------------------------------------------------

%e 1 | 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 2 | 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 3 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 4 | 4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 5 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 6 | 4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 7 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 8 | 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 9 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 10 | 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...

%e 11 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 12 | 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, ...

%e 13 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 14 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 15 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 16 | 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%o (PARI)

%o up_to = 120;

%o A320000sq(n, k) = if(1==n, if(1==k,2,1), sumdiv(n, d, if(d>=k && isprime(d+1), my(p=d+1, q=n/d); sum(i=0, valuation(n, p), A320000sq(q/(p^i), p))))); \\ After _M. F. Hasler_'s code in A014197

%o A320000list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A320000sq(col,(a-(col-1))))); (v); };

%o v320000 = A320000list(up_to);

%o A320000(n) = v320000[n];

%Y Cf. A014197 (column 1).

%Y Cf. A000010, A322310.

%K nonn,tabl

%O 1,1

%A _Antti Karttunen_, Dec 03 2018