login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fully multiplicative with a(p^e) = prime(p mod 8)^e.
5

%I #7 Oct 08 2018 08:09:06

%S 1,3,5,9,11,15,17,27,25,33,5,45,11,51,55,81,2,75,5,99,85,15,17,135,

%T 121,33,125,153,11,165,17,243,25,6,187,225,11,15,55,297,2,255,5,45,

%U 275,51,17,405,289,363,10,99,11,375,55,459,25,33,5,495,11,51,425,729,121,75,5,18,85,561,17,675,2,33,605,45,85,165,17,891,625,6,5

%N Fully multiplicative with a(p^e) = prime(p mod 8)^e.

%C For all i, j: a(i) = a(j) => A319984(i) = A319984(j).

%H Antti Karttunen, <a href="/A319987/b319987.txt">Table of n, a(n) for n = 1..10000</a>

%H Antti Karttunen, <a href="/A319987/a319987.txt">Data supplement: n, a(n) computed for n = 1..100000</a>

%o (PARI) A319987(n) = { my(f=factor(n)); prod(i=1, #f~, (prime(f[i, 1]%8))^f[i, 2]); };

%Y Cf. A319984, A319985, A319986.

%K nonn,mult

%O 1,2

%A _Antti Karttunen_, Oct 06 2018