login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

FDH numbers of relatively prime strict integer partitions.
3

%I #4 Sep 29 2018 12:57:57

%S 2,6,8,10,12,14,18,20,21,22,24,26,28,30,32,33,34,35,38,40,42,44,46,48,

%T 50,52,54,55,56,57,58,60,62,63,66,68,70,72,74,75,76,77,78,80,82,84,86,

%U 88,90,91,93,94,95,96,98,99,100,102,104,105,106,108,110,112

%N FDH numbers of relatively prime strict integer partitions.

%C Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1, ..., y_k) is f(y_1) * ... * f(y_k).

%e The sequence of all relatively prime strict integer partitions begins: (1), (2,1), (3,1), (4,1), (3,2), (5,1), (6,1), (4,3), (5,2), (7,1), (3,2,1), (8,1), (5,3), (4,2,1).

%t nn=200;

%t FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];

%t FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];

%t Select[Range[nn],GCD@@(FDfactor[#]/.FDrules)==1&]

%Y Cf. A050376, A056239, A064547, A213925, A289508, A289509, A290103, A299755, A299757, A319826.

%K nonn

%O 1,1

%A _Gus Wiseman_, Sep 28 2018