login
A319818
Number of partitions of n into exactly eight positive triangular numbers.
5
1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 3, 4, 3, 4, 5, 6, 4, 6, 6, 7, 7, 7, 8, 9, 11, 9, 10, 11, 11, 14, 13, 13, 15, 16, 15, 18, 18, 18, 19, 22, 20, 22, 25, 23, 27, 26, 26, 29, 29, 32, 32, 36, 31, 37, 39, 37, 39, 42, 41, 47, 48, 44, 48, 52, 52, 54, 55, 55
OFFSET
8,10
LINKS
FORMULA
a(n) = [x^n y^8] 1/Product_{j>=1} (1-y*x^A000217(j)).
MAPLE
h:= proc(n) option remember; `if`(n<1, 0,
`if`(issqr(8*n+1), n, h(n-1)))
end:
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(
k>n or i*k<n, 0, b(n, h(i-1), k)+b(n-i, h(min(n-i, i)), k-1)))
end:
a:= n-> b(n, h(n), 8):
seq(a(n), n=8..120);
CROSSREFS
Column k=8 of A319797.
Cf. A000217.
Sequence in context: A164296 A319817 A233566 * A319819 A319820 A319799
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 28 2018
STATUS
approved