%I #5 Sep 28 2018 15:22:04
%S 1,1,2,5,11,26,68,162,423,1095,2936
%N Number of non-isomorphic intersecting strict multiset partitions (sets of multisets) of weight n.
%C A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
%e Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 strict multiset partitions:
%e 1: {{1}}
%e 2: {{1,1}}
%e {{1,2}}
%e 3: {{1,1,1}}
%e {{1,2,2}}
%e {{1,2,3}}
%e {{1},{1,1}}
%e {{2},{1,2}}
%e 4: {{1,1,1,1}}
%e {{1,1,2,2}}
%e {{1,2,2,2}}
%e {{1,2,3,3}}
%e {{1,2,3,4}}
%e {{1},{1,1,1}}
%e {{1},{1,2,2}}
%e {{2},{1,2,2}}
%e {{3},{1,2,3}}
%e {{1,2},{2,2}}
%e {{1,3},{2,3}}
%Y Cf. A007716, A283877, A305854, A306006, A316980, A318715, A318717.
%Y Cf. A319752, A319755, A319759, A319765, A319779, A319787, A319789.
%K nonn,more
%O 0,3
%A _Gus Wiseman_, Sep 27 2018