|
|
A319667
|
|
Palindromes a(n) = (10^n + 1)*(10^(n+1) + 1).
|
|
2
|
|
|
22, 1111, 101101, 10011001, 1000110001, 100001100001, 10000011000001, 1000000110000001, 100000001100000001, 10000000011000000001, 1000000000110000000001, 100000000001100000000001, 10000000000011000000000001, 1000000000000110000000000001
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..450
Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
|
|
FORMULA
|
From Colin Barker, Sep 25 2018: (Start)
G.f.: 11*(2 - 121*x + 200*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
(End)
|
|
EXAMPLE
|
For n = 3: (10^3 + 1)(10^4 + 1) = 1001 * 10001 = 10011001, so a(3) = 10011001.
|
|
MAPLE
|
seq((10^n+1)*(10^(n+1)+1), n=0..20); # Muniru A Asiru, Sep 26 2018
|
|
PROG
|
(PARI) a(n) = (10^n+1)*(10^(n+1)+1) \\ Felix Fröhlich, Sep 25 2018
(PARI) Vec(11*(2 - 121*x + 200*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^15)) \\ Colin Barker, Sep 25 2018
(GAP) a:=[22, 1111, 101101];; for n in [4..20] do a[n]:=111*a[n-1]-1110*a[n-2]+1000*a[n-3]; od; a; # Muniru A Asiru, Sep 26 2018
|
|
CROSSREFS
|
Sequence in context: A223715 A255957 A209728 * A038695 A160259 A055475
Adjacent sequences: A319664 A319665 A319666 * A319668 A319669 A319670
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Gabriel Osorio, Sep 25 2018
|
|
EXTENSIONS
|
More terms from Felix Fröhlich, Sep 25 2018
|
|
STATUS
|
approved
|
|
|
|