login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of binary rooted trees with n leaves of exactly k colors and all non-leaf nodes having out-degree 2.
11

%I #22 Apr 20 2023 14:56:43

%S 1,1,1,1,4,3,2,14,27,15,3,48,180,240,105,6,171,1089,2604,2625,945,11,

%T 614,6333,24180,42075,34020,10395,23,2270,36309,207732,554820,755370,

%U 509355,135135,46,8518,207255,1710108,6578550,13408740,14963130,8648640,2027025

%N Triangle read by rows: T(n,k) is the number of binary rooted trees with n leaves of exactly k colors and all non-leaf nodes having out-degree 2.

%C See table 2.2 in the Johnson reference.

%H Alois P. Heinz, <a href="/A319541/b319541.txt">Rows n = 1..141, flattened</a>

%H Virginia Perkins Johnson, <a href="https://people.math.sc.edu/czabarka/Theses/JohnsonThesis.pdf">Enumeration Results on Leaf Labeled Trees</a>, Ph. D. Dissertation, Univ. South Carolina, 2012.

%F T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319539(n,i).

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 4, 3;

%e 2, 14, 27, 15;

%e 3, 48, 180, 240, 105;

%e 6, 171, 1089, 2604, 2625, 945;

%e 11, 614, 6333, 24180, 42075, 34020, 10395;

%e 23, 2270, 36309, 207732, 554820, 755370, 509355, 135135;

%e ...

%p A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,

%p (t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2))

%p end:

%p T:= (n, k)-> add((-1)^i*binomial(k, i)*A(n, k-i), i=0..k):

%p seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Sep 23 2018

%t A[n_, k_] := A[n, k] = If[n<2, k n, If[OddQ[n], 0, (#(1-#)/2)&[A[n/2, k]]] + Sum[A[i, k] A[n - i, k], {i, 1, n/2}]];

%t T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}];

%t Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 02 2019, after _Alois P. Heinz_ *)

%o (PARI) \\ here R(n,k) is k-th column of A319539 as a vector.

%o R(n,k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}

%o M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}

%o {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

%Y Columns 1..5 are A001190, A220819, A220820, A220821, A220822.

%Y Main diagonal is A001147.

%Y Row sums give A319590.

%Y Cf. A241555, A319376, A319539.

%K nonn,tabl

%O 1,5

%A _Andrew Howroyd_, Sep 22 2018