login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.
1

%I #56 Oct 08 2023 15:00:31

%S 1,3,11,42,161,616,2352,8967,34153,129997,494606,1881355,7154980,

%T 27208132,103456689,393367835,1495638123,5686513994,21620239081,

%U 82199944512,312521862408,1188195487255,4517461948657,17175149855885,65298950120782,248262786503683

%N a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.

%C Let {X,Y,Z} be the roots of the cubic equation

%C t^3 + at^2 + bt + c = 0

%C where {a, b, c} are integers. Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers. Then

%C {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...}

%C is an integer sequence with the recurrence relation:

%C p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).

%C This sequence has (a, b, c) = (-7, 14, -7), (u, v, w) = (1/(sqrt(7)*tan(4*(Pi/7))), 1/(sqrt(7)*tan(8*(Pi/7))), 1/(sqrt(7)*tan(2*(Pi/7)))).

%H Colin Barker, <a href="/A319512/b319512.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,7)

%F (X, Y, Z) = (4*sin^2(2*(Pi/7)), 4*sin^2(4*(Pi/7)), 4*sin^2(8*(Pi/7)));

%F a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.

%F G.f.: (1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3). - _Colin Barker_, Dec 11 2018

%t LinearRecurrence[{7, -14, 7}, {1, 3, 11}, 30] (* _Amiram Eldar_, Dec 10 2018 *)

%t CoefficientList[Series[(1-2x)^2/(1-7x+14x^2-7x^3),{x,0,30}],x] (* _Harvey P. Dale_, Oct 08 2023 *)

%o (PARI) Vec((1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3) + O(x^40)) \\ _Colin Barker_, Dec 11 2018

%Y Cf. A215007, A215008, A215143, A215493, A215494, A215510, A217274, A217444, A094430.

%K nonn,easy

%O 0,2

%A _Kai Wang_, Dec 10 2018

%E More terms from _Felix Fröhlich_, Dec 10 2018