login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of Fibonacci(n) into exactly n positive Fibonacci numbers.
4

%I #24 Dec 08 2020 08:36:47

%S 1,1,0,0,0,1,2,6,16,43,117,305,769,1907,4686,11587,28580,70451,172880,

%T 423629,1036332,2533559,6186635,15092985,36784586,89590410,218069921,

%U 530551804,1290218120,3136385254,7621522229,18515039477,44966884766,109184448962

%N Number of partitions of Fibonacci(n) into exactly n positive Fibonacci numbers.

%H Alois P. Heinz, <a href="/A319503/b319503.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = [x^A000045(n) y^n] 1/Product_{j>=2} (1-y*x^A000045(j)).

%F a(n) = A319394(A000045(n),n).

%e a(0) = 1: the empty partition.

%e a(1) = 1: 1.

%e a(5) = 1: 11111.

%e a(6) = 2: 221111, 311111.

%e a(7) = 6: 2222221, 3222211, 3322111, 3331111, 5221111, 5311111.

%t (* Program not suitable for a large number of terms. *)

%t a[n_] := a[n] = If[n < 2, 1, IntegerPartitions[Fibonacci[n], {n}, Fibonacci[Range[2, n - 1]]] //Length];

%t Table[Print[n, " ", a[n]]; a[n], {n, 0, 24}] (* _Jean-François Alcover_, Dec 08 2020 *)

%Y Cf. A000045, A098641, A259254, A319394, A319435.

%K nonn

%O 0,7

%A _Alois P. Heinz_, Sep 20 2018