OFFSET
5,3
COMMENTS
A graph is k-semi-transitively orientable if it admits an acyclic orientation that avoids shortcuts of length k or less. The notion of a k-semi-transitive orientation refines that of a semi-transitive orientation, which is the case of k equal infinity. For n<9, the number of non-3-semi-transitively orientable graphs is precisely the number of non-semi-transitively orientable graphs, which in turn is the same as the number of non-word-representable graphs. For n=9, there are four 3-semi-transitively orientable graphs which are not semi-transitively orientable.
LINKS
Ozgur Akgun, Ian P. Gent, Sergey Kitaev, Hans Zantema, Solving computational problems in the theory of word-representable graphs, arXiv:1808.01215 [math.CO], 2018.
EXAMPLE
The wheel graph W_5 is the only connected graph on 6 vertices that is non-3-semi-transitively orientable.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Sergey Kitaev, Sep 20 2018
STATUS
approved