%I #49 Dec 30 2018 12:08:16
%S 0,1,2,2,3,5,5,6,5,7,9,7,8,11,13,9,11,14,16,17,19,21,21,14,14
%N a(n) is the minimum number of distinct distances between n non-attacking rooks on an n X n chessboard.
%C a(n) <= n - 1, which is the number of distinct distances the rooks are placed along a diagonal.
%C Conjecture: a(n^2) = A047800(n-1) - 1. - _Peter Kagey_, Nov 02 2018
%H Giovanni Resta, <a href="/A319476/a319476.pdf">Illustration of a(3)-a(14)</a>
%e For n = 7 a board with a(7) = 5 distinct distances is
%e +---+---+---+---+---+---+---+
%e 7 | | | * | | | | |
%e +---+---+---+---+---+---+---+
%e 6 | | | | | | * | |
%e +---+---+---+---+---+---+---+
%e 5 | * | | | | | | |
%e +---+---+---+---+---+---+---+
%e 4 | | | | * | | | |
%e +---+---+---+---+---+---+---+.
%e 3 | | | | | | | * |
%e +---+---+---+---+---+---+---+
%e 2 | | * | | | | | |
%e +---+---+---+---+---+---+---+
%e 1 | | | | | * | | |
%e +---+---+---+---+---+---+---+
%e A B C D E F G
%e The distances between pairs of points are:
%e 1) sqrt(10) (e.g., A5 to B2),
%e 2) 2*sqrt(2) (e.g., A5 to C7),
%e 3) 4*sqrt(2) (e.g., B2 to F6),
%e 4) 2*sqrt(10) (e.g., A5 to G3), and
%e 5) sqrt(26) (e.g., A5 to F6).
%Y Cf. A008404, A319476, A320575, A320576, A320448, A320573, A320574.
%K nonn,more
%O 1,3
%A _Peter Kagey_, Oct 12 2018
%E a(11)-a(14) from _Giovanni Resta_, Oct 17 2018
%E a(15)-a(25) from _Bert Dobbelaere_, Dec 30 2018