%I #15 Nov 27 2019 20:35:30
%S 0,1,1,2,1,1,2,3,2,1,2,2,1,2,3,4,3,2,2,2,1,2,3,3,2,1,2,2,2,3,4,5,4,3,
%T 3,3,2,2,3,3,2,1,2,2,2,3,4,4,3,2,2,2,1,2,3,3,2,2,2,3,3,3,4,5
%N Irregular triangle read by rows: row n lists the cuts-resistances of the 2^n binary vectors of length n.
%C The cuts-resistance of a vector is defined in A319416. The 2^n vectors of length n are taken in lexicographic order.
%C Note that here the vectors can begin with either 0 or 1, whereas in A319416 only vectors beginning with 1 are considered (since there we are considering binary representations of numbers).
%C Conjecture: The row sums, halved, appear to match A189391.
%H Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003. See table on page 4.
%e Triangle begins:
%e 0,
%e 1,1,
%e 2,1,1,2,
%e 3,2,1,2,2,1,2,3,
%e 4,3,2,2,2,1,2,3,3,2,1,2,2,2,3,4,
%e 5,4,3,3,3,2,2,3,3,2,1,2,2,2,3,4,4,3,2,2,2,1,2,3,3,2,2,2,3,3,3,4,5,
%e ...
%t degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
%t Table[degdep[Rest[IntegerDigits[n,2]]],{n,0,50}] (* _Gus Wiseman_, Nov 25 2019 *)
%Y Keeping the first digit gives A319416.
%Y Positions of 1's are the terms > 1 of A061547 and A086893, all minus 1.
%Y The version for runs-resistance is A329870.
%Y Compositions counted by cuts-resistance are A329861.
%Y Binary words counted by cuts-resistance are A319421 or A329860.
%Y Cf. A000975, A027383, A189391, A318921, A318928, A319411, A329767, A329862, A329865.
%K nonn,tabf,more
%O 0,4
%A _N. J. A. Sloane_, Sep 22 2018