login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of plane trees with n nodes where the sequence of branches directly under any given node is a chain of distinct multisets.
4

%I #6 Sep 19 2018 09:18:06

%S 1,1,1,2,3,5,9,17,30,53,94,169,303,543,968,1728,3080,5491,9776,17415,

%T 31008

%N Number of plane trees with n nodes where the sequence of branches directly under any given node is a chain of distinct multisets.

%H Gus Wiseman, <a href="/A319380/a319380.png">The a(12) = 169 identity chain trees.</a>

%e The a(8) = 17 locally identity chain trees:

%e (((((((o))))))) (((((o(o)))))) (((o(o(o))))) (o(o(o(o))))

%e ((((o((o)))))) ((o((o(o))))) (o(o)(o(o)))

%e (((o(((o)))))) ((o(o((o)))))

%e ((o((((o)))))) (((o)(o(o))))

%e (o(((((o)))))) (o(((o(o)))))

%e (o((o((o)))))

%e (o(o(((o)))))

%e ((o)(o((o))))

%e (((o))(o(o)))

%t submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{___,x_,W___}}/;submultisetQ[{Z},{W}]]];

%t idchnplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[idchnplane/@c],And[UnsameQ@@#,And@@submultisetQ@@@Partition[#,2,1]]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];

%t Table[Length[idchnplane[n]],{n,10}]

%Y Cf. A000081, A000108, A001003, A005043, A007562, A118376, A316470, A319122, A319379, A319381.

%K nonn,more

%O 1,4

%A _Gus Wiseman_, Sep 17 2018