login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Filter sequence combining gcd(n,tau(n)) (= A009191) with the prime signature of n (A046523).
3

%I #6 Sep 24 2018 17:46:19

%S 1,2,3,4,3,5,3,6,7,5,3,8,3,5,9,10,3,8,3,11,9,5,3,12,4,5,13,11,3,14,3,

%T 15,9,5,9,16,3,5,9,12,3,14,3,11,17,5,3,18,4,11,9,11,3,19,9,12,9,5,3,

%U 20,3,5,17,21,9,14,3,11,9,14,3,22,3,5,17,11,9,14,3,23,10,5,3,20,9,5,9,12,3,24,9,11,9,5,9,25,3,11,17,26,3,14,3,12,27

%N Filter sequence combining gcd(n,tau(n)) (= A009191) with the prime signature of n (A046523).

%C Restricted growth sequence transform of ordered pair [A009191(n), A046523(n)].

%H Antti Karttunen, <a href="/A319337/b319337.txt">Table of n, a(n) for n = 1..65537</a>

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A009191(n) = gcd(n, numdiv(n));

%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p=0); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };

%o v319337 = rgs_transform(vector(up_to,n,[A009191(n),A046523(n)]));

%o A319337(n) = v319337[n];

%Y Cf. A009191, A046523, A101296, A300230, A300240, A305801, A319338.

%K nonn

%O 1,2

%A _Antti Karttunen_, Sep 24 2018