login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319314
Numbers k such that 2^phi(k) == phi(k)^2 (mod k^2).
0
1, 3, 4, 5, 6, 8, 10, 12, 384, 640, 768, 896, 960, 24576, 49152, 950272, 1425408, 1572864, 3145728, 10485760, 19398656, 65011712, 100663296, 110057537, 201326592, 220115074, 671088640, 1879048192
OFFSET
1,2
COMMENTS
Sequence is infinite, i.e., 3*2^(3*(t-1)-(-1)^t) is a term for all t > 0.
Prime terms (5, 110057537, ...) are in A246568 based on case A = +1.
PROG
(PARI) isok(n) = Mod(2, n^2)^eulerphi(n)==eulerphi(n)^2;
(Magma) [1] cat [n: n in [1..10^6] | 2^EulerPhi(n) mod n^2 eq EulerPhi(n)^2]; // Vincenzo Librandi, Sep 20 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Sep 17 2018
STATUS
approved