login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319220
Number of rooted identity trees with n colored non-root nodes where the set of colors equals {1,...,k} for some k <= n.
2
1, 1, 4, 32, 362, 5454, 102469, 2312418, 60994931, 1842667249, 62760237328, 2379922607427, 99460696044565, 4542324964768755, 225087388544097949, 12029089158757401655, 689679033455762592599, 42228989406791157626917, 2750301966874829159250696
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} A256068(n+1,k).
MAPLE
b:= proc(n, k) option remember; `if`(n<2, n, add(b(n-j, k)*add(b(d, k)
*k*d*(-1)^(j/d+1), d=numtheory[divisors](j)), j=1..n-1)/(n-1))
end:
a:= n-> add(add(b(n+1, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n < 2, n, Sum[b[n - j, k]*Sum[b[d, k]*
k*d*(-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n - 1}]/(n - 1)];
a[n_] := Sum[Sum[b[n+1, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}], {k, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 02 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A256068.
Sequence in context: A304911 A224993 A357407 * A347021 A051489 A375949
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 13 2018
STATUS
approved