Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Dec 14 2024 07:33:26
%S 1,2,5,12,27,62,143,328,753,1730,3973,9124,20955,48126,110527,253840,
%T 582977,1338882,3074917,7061948,16218683,37248318,85545615,196466648,
%U 451211249,1036265410,2379918501,5465792852,12552905275,28829382142
%N a(n) = 2*(a(n-1) + a(n-3)) - a(n-4), with a(0) = 1, a(1) = 2, a(2) = 5 and a(3) = 12.
%C The growth factor for large n (i.e., a(n)/a(n-1)) is (1 + sqrt(3) + sqrt(2*sqrt(3))) = A319129.
%H Colin Barker, <a href="/A319172/b319172.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,2,-1).
%F Limit_{n -> inf} a(n)/a(n-1) = (1 + sqrt(3) + sqrt(2*sqrt(3)))/2 = A319129.
%F G.f.: (1 + x^2) / (1 - 2*x - 2*x^3 + x^4). - _Colin Barker_, Sep 13 2018
%p f:= gfun:-rectoproc({a(n) = 2*(a(n-1)+a(n-3))-a(n-4), a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 12},a(n),remember):
%p map(f, [$0..40]); # _Robert Israel_, Sep 12 2018
%t LinearRecurrence[{2, 0, 2, -1}, {1, 2, 5, 12}, 30] (* _Vincenzo Librandi_, Sep 29 2018 *)
%t CoefficientList[Series[(1 + x^2) / (1 - 2*x - 2*x^3 + x^4), {x, 0, 30}], x] (* _Stefano Spezia_, Sep 29 2018 *)
%o (GAP) a:=[1,2,5,12];; for n in [5..30] do a[n]:=2*(a[n-1]+a[n-3])-a[n-4]; od; a; # _Muniru A Asiru_, Sep 12 2018
%o (PARI) Vec((1 + x^2) / (1 - 2*x - 2*x^3 + x^4) + O(x^40)) \\ _Colin Barker_, Sep 13 2018
%o (Magma) I:=[1,2,5,12]; [n le 4 select I[n] else 2*(Self(n-1) + Self(n-3)) - Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Sep 29 2018
%Y Cf. A319129.
%K nonn,easy
%O 0,2
%A _A.H.M. Smeets_, Sep 12 2018