The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319116 Signs of the Maclaurin coefficients of 1/(exp(x) + Pi/2). 0
 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 LINKS FORMULA Conjecture: a(n) is the same as the sign of cos((n+1)*arctan(Pi/log(Pi/2))). We can also use arctan(Pi/log(Pi/2))/Pi ~ 1/2 ~ 5/11 ~ 3776/8307 ~ 3781/8318 and so on. If the numerator is odd, we have, for example, a(n) = -a(n+2) or a(n) = -a(n+11) with some counterexamples. For even numerators we have, for example, a(n) = a(n+8307), also with some counterexamples. EXAMPLE a(1) = -a(12) = a(23) = -1. MAPLE S:= series(1/(exp(x)+Pi/2), x, 147): seq(signum(coeff(S, x, j)), j=0..146); MATHEMATICA Sign[CoefficientList[Series[1/(Exp[x] + Pi/2), {x, 0, 100}], x]] (* G. C. Greubel, Oct 31 2018 *) PROG (PARI) apply(x->sign(x), Vec(1/(exp(x+O(x^100)) + Pi/2))) \\ Michel Marcus, Sep 13 2018 CROSSREFS Cf. A210245, A210247. Sequence in context: A210245 A210247 A256175 * A337004 A343785 A359738 Adjacent sequences: A319113 A319114 A319115 * A319117 A319118 A319119 KEYWORD sign AUTHOR Mikhail Kurkov, Sep 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 11:47 EST 2023. Contains 359922 sequences. (Running on oeis4.)