Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Aug 10 2023 02:17:26
%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,
%T 1,1,1,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1,1,1,1,1,
%U 1,1,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,7
%N Number of solutions to x^7 == 1 (mod n).
%C All terms are powers of 7. Those n such that a(n) > 1 are in A066502.
%H Jianing Song, <a href="/A319101/b319101.txt">Table of n, a(n) for n = 1..10000</a>
%F Multiplicative with a(7) = 1, a(7^e) = 7 if e >= 2; for other primes p, a(p^e) = 7 if p == 1 (mod 7), a(p^e) = 1 otherwise.
%F If the multiplicative group of integers modulo n is isomorphic to C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j; then a(n) = Product_{i=1..m} gcd(7, k_i).
%F a(n) = A000010(n)/A293484(n). - _Jianing Song_, Nov 10 2019
%e Solutions to x^7 == 1 (mod 29): x == 1, 7, 16, 20, 23, 24, 25 (mod 29).
%e Solutions to x^7 == 1 (mod 43): x == 1, 4, 11, 16, 21, 35, 41 (mod 43).
%e Solutions to x^7 == 1 (mod 49): x == 1, 8, 15, 22, 29, 36, 43 (mod 49) (x == 1 (mod 7)).
%t f[p_, e_] := If[Mod[p, 7] == 1, 7, 1]; f[7, 1] = 1; f[7, e_] := 7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 10 2023 *)
%o (PARI) a(n)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(7, Z[i]))
%Y Number of solutions to x^k == 1 (mod n): A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), A319100 (k=6), this sequence (k=7), A247257 (k=8).
%Y Cf. A066502, A140444, A293484, A000010.
%Y Mobius transform gives A307382.
%K nonn,easy,mult
%O 1,29
%A _Jianing Song_, Sep 10 2018