login
Number of nonequivalent ways to place n^2 nonattacking kings on a 2n X 2n chessboard under all symmetry operations of the square.
2

%I #68 Dec 24 2018 08:56:12

%S 1,14,459,35312,4072108,638653285,128441726634,31872148398195,

%T 9490641145219266,3321018871480028710

%N Number of nonequivalent ways to place n^2 nonattacking kings on a 2n X 2n chessboard under all symmetry operations of the square.

%C A maximum of n^2 nonattacking kings may be placed on a 2n X 2n chessboard.

%F a(n) = A236679(2n+1, n^2).

%e For n = 2 there are a(2) = 14 distinct solutions from 79 that will not be repeated at all possible turns and reflections.

%e ------------

%e 1. 2.

%e _________________ _________________

%e | * | | * | | | * | | * | |

%e | | | | | | | | | |

%e | * | | * | | | * | | | * |

%e | | | | | | | | | |

%e ------------

%e 3. 4.

%e _________________ _________________

%e | * | | * | | | * | | * | |

%e | | | | | | | | | |

%e | * | | | | | | * | | * |

%e | | | | * | | | | | |

%e ------------

%e 5. 6.

%e _________________ _________________

%e | * | | * | | | * | | * | |

%e | | | | | | | | | |

%e | | * | | | | | | * | |

%e | | | | * | | * | | | |

%e ------------

%e 7. 8.

%e _________________ _________________

%e | * | | * | | | * | | * | |

%e | | | | | | | | | |

%e | | | | * | | | | | |

%e | * | | | | | * | | * | |

%e ------------

%e 9. 10.

%e _________________ _________________

%e | * | | * | | | * | | * | |

%e | | | | | | | | | |

%e | | | | | | | | | * |

%e | * | | | * | | | * | | |

%e ------------

%e 11. 12.

%e _________________ _________________

%e | * | | * | | | * | | | * |

%e | | | | | | | | | |

%e | | | | | | | * | | |

%e | | * | | * | | | | | * |

%e ------------

%e 13. 14.

%e _________________ _________________

%e | * | | | * | | | * | | |

%e | | | | | | | | | * |

%e | | | | | | * | | | |

%e | * | | | * | | | | * | |

%e ------------

%Y Cf. A018807 (rotations and reflections considered distinct).

%Y Cf. A137432 (on cylindrical chessboard).

%Y Cf. A236679, A322284, A321614.

%K nonn,more

%O 1,2

%A _Anton Nikonov_, Dec 21 2018

%E a(4)-a(10) from _Andrew Howroyd_, Dec 21 2018