login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.
4

%I #29 Jan 08 2019 08:38:45

%S 1,3,2,4,6,3,7,8,9,4,6,14,12,12,5,12,12,21,16,15,6,8,24,18,28,20,18,7,

%T 15,16,36,24,35,24,21,8,13,30,24,48,30,42,28,24,9,18,26,45,32,60,36,

%U 49,32,27,10,12,36,39,60,40,72,42,56,36,30,11,28,24,54,52,75,48,84,48,63,40,33,12

%N Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%e The corner of the square array begins:

%e A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528

%e A000027: 1, 2, 3, 4, 5, 6, 7, 8, ...

%e A008585: 3, 6, 9, 12, 15, 18, 21, 24, ...

%e A008586: 4, 8, 12, 16, 20, 24, 28, 32, ...

%e A008589: 7, 14, 21, 28, 35, 42, 49, 56, ...

%e A008588: 6, 12, 18, 24, 30, 36, 42, 48, ...

%e A008594: 12, 24, 36, 48, 60, 72, 84, 96, ...

%e A008590: 8, 16, 24, 32, 40, 48, 56, 64, ...

%e A008597: 15, 30, 45, 60, 75, 90, 105, 120, ...

%e A008595: 13, 26, 39, 52, 65, 78, 91, 104, ...

%e A008600: 18, 36, 54, 72, 90, 108, 126, 144, ...

%e ...

%p with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # _Muniru A Asiru_, Jan 01 2019

%t Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* _Michael De Vlieger_, Dec 31 2018 *)

%o (GAP) T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # _Muniru A Asiru_, Jan 01 2019

%Y Another version of A274824.

%Y Antidiagonal sums give A175254.

%Y Main diagonal gives A064987.

%Y Row n lists the multiples of A000203(n).

%Y Row 1 is A000027.

%Y Initial zeros should be omitted in the following sequences related to the rows of the array:

%Y Row 2-5: A008585, A008586, A008589, A008588.

%Y Rows 6 and 11: A008594.

%Y Rows 7-9: A008590, A008597, A008595.

%Y Rows 10 and 17: A008600.

%Y Rows 12-13: A135628, A008596.

%Y Rows 14, 15 and 23: A008606.

%Y Rows 16 and 25: A135631.

%Y (Note that in the OEIS there are many other sequences that are also rows of this square array.)

%Y Cf. A000203, A237593, A319526.

%K nonn,tabl,easy

%O 1,2

%A _Omar E. Pol_, Sep 22 2018