Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Sep 07 2018 04:45:20
%S 1,2,4,3,8,7,16,5,9,19,32,17,64,53,11,128,23,256,67,49,131,512,59,27,
%T 311,25,241,1024,2048,31,719,83,4096,1619,361,331,8192,227,16384,739,
%U 3671,32768,277,81,103,2063,65536,97,1523,2809,8161,131072,262144,17863
%N Matula-Goebel number of the planted achiral tree determined by the n-th number whose consecutive prime indices are divisible.
%H Gus Wiseman, <a href="/A318993/a318993.png">The first 81 planted achiral trees corresponding to the first 81 dividing partitions.</a>
%e The sequence of all planted achiral trees begins: o, (o), (oo), ((o)), (ooo), ((oo)), (oooo), (((o))), ((o)(o)), ((ooo)), (ooooo), (((oo))), (oooooo), ((oooo)), ((((o)))), (ooooooo), (((o)(o))), (oooooooo), (((ooo))), ((oo)(oo)).
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t ptnToAch[y_]:=Fold[Table[#1,{#2}]&,{},Divide@@@Partition[Append[y,1],2,1]];
%t MGNumber[_[]]:=1;MGNumber[x:_[__]]:=If[Length[x]==1,Prime[MGNumber[x[[1]]]],Times@@Prime/@MGNumber/@x];
%t MGNumber/@ptnToAch/@Reverse/@primeMS/@Select[Range[100],Or[#==1,PrimeQ[#],Divisible@@Reverse[primeMS[#]]]&]
%Y Cf. A000040, A001221, A003238, A008480, A061775, A214577, A318990, A318991, A318992.
%K nonn
%O 1,2
%A _Gus Wiseman_, Sep 06 2018