login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by rows: T(n,k) is the number of nonisomorphic n X n matrices with nonnegative integer entries and row sums k under row and column permutations, (n >= 1, k >= 0).
11

%I #17 Sep 13 2018 02:43:42

%S 1,1,1,1,2,1,1,4,3,1,1,6,14,5,1,1,9,44,53,7,1,1,12,129,458,198,11,1,1,

%T 16,316,3411,5929,782,15,1,1,20,714,19865,145168,96073,3111,22,1,1,25,

%U 1452,95214,2459994,9283247,1863594,12789,30,1,1,30,2775,383714,30170387,537001197,833593500,42430061,53836,42,1

%N Array read by rows: T(n,k) is the number of nonisomorphic n X n matrices with nonnegative integer entries and row sums k under row and column permutations, (n >= 1, k >= 0).

%H Andrew Howroyd, <a href="/A318951/b318951.txt">Table of n, a(n) for n = 1..1275</a>

%e Array begins:

%e ================================================================

%e n\k| 0 1 2 3 4 5 6

%e ---|------------------------------------------------------------

%e 1 | 1 1 1 1 1 1 1 ...

%e 2 | 1 2 4 6 9 12 16 ...

%e 3 | 1 3 14 44 129 316 714 ...

%e 4 | 1 5 53 458 3411 19865 95214 ...

%e 5 | 1 7 198 5929 145168 2459994 30170387 ...

%e 6 | 1 11 782 96073 9283247 537001197 19578605324 ...

%e 7 | 1 15 3111 1863594 833593500 189076534322 23361610029905 ...

%e ...

%t permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];

%t K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];

%t RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];

%t Table[RowSumMats[n-k, n-k, k], {n, 1, 11}, {k, n-1, 0, -1}] // Flatten (* _Jean-François Alcover_, Sep 12 2018, after _Andrew Howroyd_ *)

%o (PARI)

%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

%o K(q, t, k)={polcoeff(1/prod(j=1, #q, my(g=gcd(t, q[j])); (1 - x^(q[j]/g) + O(x*x^k))^g), k)}

%o RowSumMats(n, m, k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoeff(exp(sum(t=1, n, K(q, t, k)/t*x^t) + O(x*x^n)), n)); s/m!}

%o for(n=1, 8, for(k=0, 6, print1(RowSumMats(n, n, k), ", ")); print)

%Y Rows 2..6 are A002620(n+2), A058389, A058390, A058391, A058392.

%Y Cf. A304942, A306017.

%K nonn,tabl

%O 1,5

%A _Andrew Howroyd_, Sep 05 2018