login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{1<=x<=n, n|(x^2-1)} x.
1

%I #17 Nov 05 2019 00:57:16

%S 1,1,2,3,4,5,6,105,8,9,10,385,12,13,616,945,16,17,18,1881,2080,21,22,

%T 37182145,24,25,26,5265,28,6061,30,7905,7360,33,5916,11305,36,37,

%U 13300,1384944561,40,15457,42,20769,21736,45,46,4087504225,48,49,28000,34425

%N a(n) = Product_{1<=x<=n, n|(x^2-1)} x.

%C a(n) is the product of self-inverse elements in (Z/nZ)*, where (Z/nZ)* is the multiplicative group of integers modulo n.

%C For n >= 2, a(n) = n - 1 iff n is in A033948. For other n, a(n) == 1 (mod n). This can also be written as: a(n) == (-1)^A034380(n) == (-1)^(A060594(n)/2) (mod n) for n >= 3.

%C More generally, let P(k,n) = Product_{1<=x<=n, n|(x^k-1)} x, then P(k,n) == 1 (mod n) if k is odd or n is not in A033948, P(k,n) == -1 (mod n) otherwise. Equivalently, if A046072(n) > 1 then P(k,n) == 1 (mod n), otherwise P(k,n) == (-1)^((k+1)/2) (mod n).

%H Robert Israel, <a href="/A318909/b318909.txt">Table of n, a(n) for n = 1..10000</a>

%e For n = 8, 1^2 == 3^2 == 5^2 == 7^2 == 1 (mod 8) so a(8) = 1*3*5*7 = 105.

%e For n = 12, 1^2 == 5^2 == 7^2 == 11^2 == 1 (mod 12) so a(12) = 1*5*7*11 = 385.

%p f:= proc(n) convert(map(t -> rhs(op(t)),[msolve(x^2=1,n)]),`*`) end proc:

%p f(1):= 1:

%p map(f, [$1..100]); # _Robert Israel_, Nov 05 2019

%o (PARI) a(n) = prod(i=1, n, i^(Mod(i^2-1,n)==0))

%Y Cf. A033948, A034380, A046072, A060594.

%K nonn,look

%O 1,3

%A _Jianing Song_, Sep 05 2018