Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Sep 16 2018 21:44:01
%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,21,
%T 26,27,28,29,30,31,32,33,34,35,36,37,34,38,39,40,41,42,43,44,45,46,47,
%U 42,48,43,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,53,70,59,71,66,72,73,74,51,75,76,77,78,79,80,81,76,82,83,71
%N Filter sequence combining the prime signature of n (A046523) with Euler totient function (A000010).
%C Restricted growth sequence transform of A286160.
%C For all i, j: a(i) = a(j) => A062355(i) = A062355(j).
%H Antti Karttunen, <a href="/A318893/b318893.txt">Table of n, a(n) for n = 1..65537</a>
%o (PARI)
%o up_to = 65537;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
%o A318893aux(n) = [eulerphi(n), A046523(n)];
%o v318893 = rgs_transform(vector(up_to,n,A318893aux(n)));
%o A318893(n) = v318893[n];
%Y Cf. A000010, A046523, A286160, A318839, A318892.
%Y Cf. also A061468, A062355.
%K nonn
%O 1,2
%A _Antti Karttunen_, Sep 16 2018