login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of A083254(d) for all such divisors d of n for which A083254(d) > 0.
8

%I #12 Sep 05 2018 17:18:57

%S 1,1,2,1,4,2,6,1,5,4,10,2,12,6,6,1,16,5,18,4,10,10,22,2,19,12,14,6,28,

%T 6,30,1,18,16,22,5,36,18,22,4,40,10,42,10,12,22,46,2,41,19,30,12,52,

%U 14,38,6,34,28,58,6,60,30,22,1,46,18,66,16,42,22,70,5,72,36,26,18,58,22,78,4,41,40,82,10,62,42,54,10,88,12,70,22,58,46,70,2

%N Sum of A083254(d) for all such divisors d of n for which A083254(d) > 0.

%H Antti Karttunen, <a href="/A318878/b318878.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = Sum_{d|n} [A083254(d) > 0]*A083254(d), where A083254(n) = 2*phi(n) - n, and [ ] are the Iverson brackets.

%F a(n) = A318879(n) + A033879(n).

%e n = 105 has divisors [1, 3, 5, 7, 15, 21, 35, 105]. When A083254 is applied to them, we obtain [1, 1, 3, 5, 1, 3, 13, -9]. Summing the positive numbers present, we get a(105) = 1+1+3+5+1+3+13 = 27.

%o (PARI) A318878(n) = sumdiv(n,d,d=(2*eulerphi(d))-d; (d>0)*d);

%Y Cf. A000010, A033879, A083254, A318879.

%Y Cf. also A318678, A318874, A318876.

%K nonn

%O 1,3

%A _Antti Karttunen_, Sep 05 2018