Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #26 Jan 13 2024 16:28:40
%S 4,4,1,8,0,4,2,6,3,2,7,0,7,6,5,3,2,1,5,6,7,1,1,9,4,3,9,3,9,6,8,8,9,0,
%T 0,5,1,4,9,3,7,4,9,4,0,9,0,9,2,4,7,5,4,1,7,7,7,6,6,0,4,8,2,9,9,7,4,3,
%U 9,2,9,2,3,4,3,4,1,7,5,6,0,9,3,3,7,6,6
%N Decimal expansion of the nontrivial real solution to x^6 - x^3 + x^2 + 2*x - 1 = 0.
%C The first part of Ramanujan's question 699 in the Journal of the Indian Mathematical Society (VII, 199) asked "Show that the roots of the equations x^6 - x^3 + x^2 + 2*x - 1 = 0, ... can be expressed in terms of radicals."
%C The polynomial includes a trivial factor, i.e., x^6 - x^3 + x^2 + 2*x - 1 = (x + 1) * (x^5 - x^4 + x^3 - 2*x^2 + 3*x - 1).
%D V. M. Galkin, O. R. Kozyrev, On an algebraic problem of Ramanujan, pp. 89-94 in Number Theoretic And Algebraic Methods In Computer Science - Proceedings Of The International Conference, Moscow 1993, Ed. Horst G. Zimmer, World Scientific, 31 Aug 1995
%H B. C. Berndt, Y. S. Choi, S. Y. Kang, <a href="https://faculty.math.illinois.edu/~berndt/jims.ps">The problems submitted by Ramanujan to the Journal of Indian Math. Soc.</a>, in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q699, JIMS VII).
%F Equals 2^(1/4) / G(79), where G(n) is Ramanujan's class invariant G(n) = 2^(-1/4) * q(n)^(-1/24) * Product_{k>=0} (1 + q(n)^(2*k + 1)), with q(n) = exp(-Pi * sqrt(n)).
%e 0.441804263270765321567119439396889005149374940909247541777660...
%t RealDigits[Root[x^6-x^3+x^2+2x-1,2],10,120][[1]] (* _Harvey P. Dale_, Jan 13 2024 *)
%o (PARI) p(x)=x^5-x^4+x^3-2*x^2+3*x-1;solve(x=0.3,0.5,p(x))
%o (PARI) q(x)=exp(-Pi*sqrt(x)); G(n)=2^(-1/4)*q(n)^(-1/24)*prodinf(k=0,(1+q(n)^(2*k+1))); 2^(1/4)/G(79)
%Y Cf. A318733.
%K nonn,cons
%O 0,1
%A _Hugo Pfoertner_, Sep 02 2018