Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Sep 03 2018 23:01:25
%S 1,1,3,1,5,3,7,3,19,5,11,3,13,7,15,5,17,19,19,5,21,11,23,9,59,13,95,7,
%T 29,15,31,9,33,17,35,19,37,19,39,15,41,21,43,11,95,23,47,15,123,59,51,
%U 13,53,95,55,21,57,29,59,15,61,31,133,67,65,33,67,17,69,35,71,57,73,37,177,19,77,39,79,25,2019,41,83,21,85,43,87,33,89
%N Numerators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.
%H Antti Karttunen, <a href="/A318661/b318661.txt">Table of n, a(n) for n = 1..65537</a>
%F a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o (PARI)
%o up_to = 1+(2^16);
%o A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653
%o DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
%o v318661_62 = DirSqrt(vector(up_to, n, A055653(n)));
%o A318661(n) = numerator(v318661_62[n]);
%o A318662(n) = denominator(v318661_62[n]);
%o A318663(n) = valuation(A318662(n),2);
%Y Cf. A055653, A318662 (denominators).
%K nonn
%O 1,3
%A _Antti Karttunen_, Sep 03 2018