login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer partitions of n whose sum of reciprocals squared is 1.
5

%I #8 Aug 30 2018 08:36:56

%S 0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,1,0,

%T 0,0,1,0,1,1,0,2,2,0,0,0,2,0,2,1,2,2,2,1,1,2,3,0,1,1,6,2,3,2,6,2,2,3,

%U 2,6,7,2,4,3,9,4,7,5,8,8,7,9,9,11,12,7,9,11,17,9,13,12,17,16,13,15,20,26,27,18,23

%N Number of integer partitions of n whose sum of reciprocals squared is 1.

%C The a(16) = 1 integer partition:

%C (6,3,3,2,2,2)

%C The a(48) = 2 integer partitions:

%C (18,9,9,3,3,2,2,2)

%C (6,6,6,6,3,3,3,3,3,3,3,3)

%C The a(56) = 3 integer partitions:

%C (12,6,6,4,4,4,4,4,4,4,2,2)

%C (10,6,5,5,5,5,5,5,3,3,2,2)

%C (6,6,4,4,4,4,4,4,4,4,3,3,3,3)

%C The a(60) = 6 integer partitions:

%C (12,12,12,12,3,3,2,2,2)

%C (8,8,8,8,6,4,4,4,3,3,2,2)

%C (6,6,6,6,6,6,6,6,6,2,2,2)

%C (12,12,12,4,3,3,3,3,3,3,2)

%C (10,5,5,5,5,5,5,4,4,4,4,2,2)

%C (6,4,4,4,4,4,4,4,4,4,4,4,4,3,3)

%t Table[Length[Select[IntegerPartitions[n],Total[#^(-2)]==1&]],{n,30}]

%Y Cf. A000041, A051908, A058360, A289506, A289507, A316854, A316855.

%Y Cf. A318585, A318586, A318587, A318588, A318589.

%K nonn

%O 0,42

%A _Gus Wiseman_, Aug 29 2018

%E a(61)-a(100) from _Alois P. Heinz_, Aug 30 2018