login
Number of nX4 0..1 arrays with every element unequal to 1, 2, 3 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Aug 26 2018 11:21:50

%S 2,50,147,889,3999,20016,95349,461349,2221254,10709861,51624399,

%T 248863408,1199637700,5783023852,27877251865,134385218809,

%U 647812913270,3122835963696,15053866740282,72568333809069,349821262874768

%N Number of nX4 0..1 arrays with every element unequal to 1, 2, 3 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

%C Column 4 of A318430.

%H R. H. Hardin, <a href="/A318426/b318426.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +22*a(n-2) +4*a(n-3) -137*a(n-4) +36*a(n-5) +702*a(n-6) +60*a(n-7) -1958*a(n-8) -1039*a(n-9) +2753*a(n-10) +4078*a(n-11) +611*a(n-12) -11794*a(n-13) -27645*a(n-14) +7211*a(n-15) +106409*a(n-16) +65192*a(n-17) -213759*a(n-18) -220752*a(n-19) +236984*a(n-20) +366523*a(n-21) -49842*a(n-22) -353130*a(n-23) -239312*a(n-24) +167419*a(n-25) +307386*a(n-26) +49991*a(n-27) -110369*a(n-28) -187579*a(n-29) -96103*a(n-30) +127637*a(n-31) +137114*a(n-32) +62376*a(n-33) -63709*a(n-34) -95894*a(n-35) -12229*a(n-36) +9328*a(n-37) +32859*a(n-38) +13506*a(n-39) -6729*a(n-40) -3283*a(n-41) -9662*a(n-42) +5992*a(n-43) -1158*a(n-44) +2569*a(n-45) -1800*a(n-46) +510*a(n-47) -323*a(n-48) +200*a(n-49) -59*a(n-50) +19*a(n-51) -7*a(n-52) +a(n-53) for n>59

%e Some solutions for n=5

%e ..0..0..1..0. .0..1..1..0. .0..0..1..0. .0..0..0..0. .0..0..0..1

%e ..1..1..1..0. .0..1..1..1. .1..1..1..1. .1..1..1..0. .1..0..0..0

%e ..0..0..1..1. .1..1..0..1. .0..1..0..1. .1..1..1..0. .1..1..1..1

%e ..0..0..1..1. .0..1..1..1. .0..1..1..0. .0..1..1..0. .0..1..1..0

%e ..1..0..1..0. .0..1..0..0. .0..1..1..0. .0..0..1..1. .0..0..1..0

%Y Cf. A318430.

%K nonn

%O 1,1

%A _R. H. Hardin_, Aug 26 2018