login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet {{1},...,{n}} and join of length k.
10

%I #5 Aug 26 2018 20:11:59

%S 1,2,1,8,6,1,56,44,12,1,552,440,140,20,1,7202,5632,1920,340,30,1,

%T 118456,89278,31192,6160,700,42,1,2369922,1708016,595448,124432,16240,

%U 1288,56,1,56230544,38592786,13214672,2830632,400512,37296,2184,72,1,1552048082

%N Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet {{1},...,{n}} and join of length k.

%e The T(3,2) = 6 pairs of set partitions:

%e {{1},{2},{3}} {{1},{2,3}}

%e {{1},{2},{3}} {{1,2},{3}}

%e {{1},{2},{3}} {{1,3},{2}}

%e {{1},{2,3}} {{1},{2},{3}}

%e {{1,2},{3}} {{1},{2},{3}}

%e {{1,3},{2}} {{1},{2},{3}}

%e Triangle begins:

%e 1

%e 2 1

%e 8 6 1

%e 56 44 12 1

%e 552 440 140 20 1

%e 7202 5632 1920 340 30 1

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];

%t spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];

%t Table[Length[Select[Tuples[sps[Range[n]],2],And[Max@@Length/@spmeet@@#==1,Length[csm[Union@@#]]==k]&]],{n,5},{k,n}]

%Y Row sums are A059849. First column is A181939.

%Y Cf. A000110, A000258, A001247, A008277, A048994, A060639, A318390, A318391, A318392, A318393.

%K nonn,tabl

%O 1,2

%A _Gus Wiseman_, Aug 25 2018