login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of standard Young tableaux of 2n cells and height >= n.
1

%I #27 Sep 08 2021 12:39:07

%S 1,2,9,56,441,3952,40161,442248,5288933,67100072,904408398,

%T 12777826272,189324035423,2917525618256,46754429476800,

%U 774965979970096,13279872426589125,234395323126241080,4258775222885983350,79442662095373693728,1520453631213137081776

%N Number of standard Young tableaux of 2n cells and height >= n.

%C Also number of self-inverse permutations of [2n] with longest increasing subsequence of length >= n.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Involution_(mathematics)">Involution (mathematics)</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>

%F a(n) = A182222(2n,n).

%t h[l_] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[ If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];

%t g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g[n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];

%t t[n_, k_] := g[n, n, {}] - If[k == 0, 0, g[n, k-1, {}]];

%t a[n_] := a[n] = t[2n, n];

%t Table[Print[n, " ", a[n]]; a[n], {n, 0, 20}] (* _Jean-François Alcover_, Sep 08 2021, after _Alois P. Heinz_ in A182222 *)

%Y Cf. A182222.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Nov 04 2018