login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318158
Prime numbers of the form p1^4 + p2^3 + p3^2 + p4, where p1, p2, p3 and p4 are distinct primes.
1
79, 97, 103, 109, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397
OFFSET
1,1
COMMENTS
Does this sequence contain every prime > 113? - Robert Israel, Aug 26 2018
From David A. Corneth, Aug 26 2018: (Start)
As the primes in the sum are distinct and has four terms, exactly one of (p1, p2, p3, p4) is 2.
Contains all the primes in [120, 5 * 10^7]. (End)
EXAMPLE
227 belongs to this sequence as 227 = 3^4 + 5^3 + 2^2 + 17, with 2, 3, 5 and 17 all primes.
MAPLE
N:= 1000: # to get all terms <= N
V:= Vector(N):
p1:= 1:
do
p1:= nextprime(p1);
if p1^4 > N then break fi;
p2:= 1:
do
p2:= nextprime(p2);
if p1^4 + p2^3 > N then break fi;
if p2 = p1 then next fi;
p3:= 1;
do
p3:= nextprime(p3);
if p1^4 + p2^3 + p3^2 > N then break fi;
if p3 = p1 or p3 = p2 then next fi;
if min(p1, p2, p3)>2 then
p4:= 2;
x:= p1^4+p2^3+p3^2+p4;
if isprime(x) then V[x]:= 1 fi;
else
p4:= 2;
do
p4:= nextprime(p4);
if p1^4 + p2^3 + p3^2 + p4 > N then break fi;
if p4 = p1 or p4 = p2 or p4 = p3 then next fi;
x:= p1^4+p2^3+p3^2+p4;
if isprime(x) then V[x]:= 1 fi;
od
fi
od od od:
select(t -> V[t]=1, [$1..N]); # Robert Israel, Aug 26 2018
MATHEMATICA
v[t_] := Prime@Range@PrimePi@t; up = 400; Union@Reap[ Do[ If[PrimeQ[p = p1^4 + p2^3 + p3^2 + p4] && (s = {p1, p2, p3, p4}; Sort@s == Union@s), Sow@p], {p1, v[ up^(1/4)]}, {p2, v@Sqrt[up - p1^4]}, {p3, v[up - p1^4 - p2^3]}, {p4, v[up - p1^4 - p2^3 - p3^2]}]][[2, 1]] (* Giovanni Resta, Aug 19 2018 *)
PROG
(MiniZinc)
include "globals.mzn";
int: n = 4;
%to get all primes less than 250 of this sequence
int: max_val = 250;
array[1..n+1] of var 2..max_val: x;
% primes between 2..max_valset of int:
prime = 2..max_val diff { i | i in 2..max_val, j in 2..ceil(sqrt(i)) where i mod j = 0} ;
set of int: primes;
primes = prime union {2};
solve satisfy;
constraint all_different(x) /\
x[1] in primes /\
x[2] in primes /\
x[3] in primes /\
x[4] in primes /\
x[5] in primes /\
pow(x[4], 4)+pow(x[3], 3)+pow(x[2], 2)+pow(x[1], 1)= x[5] ;
output [ show(x[5])]
CROSSREFS
Cf. A316971.
Sequence in context: A235227 A039544 A091819 * A117244 A039436 A043259
KEYWORD
nonn
AUTHOR
Pierandrea Formusa, Aug 19 2018
EXTENSIONS
More terms from Giovanni Resta, Aug 19 2018
STATUS
approved