OFFSET
0,3
COMMENTS
Data generated using MATLAB.
Conjecture: Let r(k) = the smallest positive residue of A003095(6*k+1) mod 10^(6*k+1). Then the first 2*k + 2 digits of r(k), reading from right to left, give the first 2*k + 2 digits of this 10-adic number. For example with k = 5, r(k) = 2121286728960294(201588948901) gives the first 12 digits correctly. - Peter Bala, Nov 14 2022
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
EXAMPLE
901^2 + 1 == 802 (mod 10^3), 802^2 + 1 == 205 (mod 10^3), 205^2 + 1 == 26 (mod 10^3), 26^2 + 1 == 677 (mod 10^3), 677^2 + 1 == 330 (mod 10^3), and 330^2 + 1 == 901 (mod 10^3), so 1 0 9 comprise the sequence's first three terms.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick A. Thomas, Aug 19 2018
STATUS
approved