Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Nov 03 2021 10:08:42
%S 1,1,3,10,35,126,462,1716,6435,24301,92278,351990,1347710,5176640,
%T 19938348,76977360,297811491,1154300103,4481325903,17423296059,
%U 67830758310,264387659490,1031636761290,4029420952890,15752622069630,61634789550126,241342568718696
%N Number of compositions of n into exactly n nonnegative parts <= eight.
%H Alois P. Heinz, <a href="/A318116/b318116.txt">Table of n, a(n) for n = 0..1666</a>
%F a(n) = [x^n] ((x^9-1)/(x-1))^n.
%F a(n) <= A088218(n) with equality only for n < 9.
%F a(n) = Sum_{k=0..floor(n/9)} (-1)^k * binomial(n,k) * binomial(2*n-9*k-1,n-9*k). - _Ilya Gutkovskiy_, Nov 03 2021
%p b:= proc(n, i) option remember; `if`(n=0, 1,
%p `if`(i=0, 0, add(b(n-j, i-1), j=0..min(n, 8))))
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..30);
%Y Column k=8 of A305161.
%Y Cf. A088218.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Aug 17 2018